
Dealing with High-Dimensional Data
When deciding how to analyze big data there are two ways of thinking about it. Are the data organized 
in a few columns and lots of rows (tall and narrow), or are the data organized in lots of columns and 
few rows (short and wide)? An example of tall and narrow is credit card transactions. According to the 
Federal Reserve Bank, in 2012 there were 73.9 billion transactions on credit, debit, and prepaid cards 
– each representing a different row in the bank’s database. However, each transaction contains very 
little information – card number, transaction amount, date, location, what was purchased, etc. While it 
is big data because of the number of rows, the amount of analyses that can be done is limited because 
of the small number of variables. 

In biomedical research using high-throughput technology (i.e., -omics), short and wide occurs -- lots 
of columns (wide) corresponding to the biological measurements, and few rows (short) corresponding 
to patients or samples. While this may not be big data in terms of storage, it presents huge problems 
from having a very large number of ways of analyzing the many biological measurements. 

In this Technical Report we focus on wide and short data.

Why Dimensionality is Cursed
When statisticians think about –omics or other big data in 
medical research, one important property of the data are the 
dimensions. In this way, the data become points on a graph 
where each axis represents a different covariate (e.g., taxon 
in microbiome data, an edge in fMRI connectome graphs, a 
clinical variables in electronic health records). Each sample 
can be plotted on the graph (if not on paper then on computers 
and in mathematical notation) based on the values of its 
covariates (we call the position where the sample is plotted 
as its coordinates). In this framework, classical statistical 
methods work if the number of dimensions is relatively low. 
However, when the number of dimensions gets large, very 
weird things begin happening to the data, and applying 
statistical methods used for low dimensional data will give 
wrong results. This is known as the curse of dimensionality 
or large P, small N problem. In other words, you have a lot 
more covariates than samples (short and wide data).

Figure 1 shows 1000 data points plotted on two axes – 
or two dimensions – randomly generated from Uniform 
distributions between -0.5 and 0.5. This means that every 
number between -0.5 and 0.5 has an equal chance of being 
selected. Overlaying the points are the solid reference lines at 
the center of the data corresponding to the (0, 0) coordinate. 
The square indicated by the dashed lines is the 10th percentile 
region which means that 10% of the data is expected to be 
contained in it, and 90% outside of it.

There are expectations that data should behave which occurs 
when there are few dimensions, but everything falls apart 
as the number of dimensions gets larger. This is where 
the curse of dimensionality gets weird and why trying 

to make predictions from high-dimensional data is a 
mistake.

A simulation was run with 1,000 samples and the number 
dimensions (covariates) ranging from 1 to 1,000. The data 
for each sample was generated from a Uniform distribution 
ranging from -0.5 to 0.5 along each dimension. Half of the 
samples were randomly assigned to one group and half to a 
second group. Since all the data is randomly generated there 
are no associations or significant variables for predicting the 
group assignment. The simulation was run 100 times with 
the results averaged across them. 

Figure 2 shows the weird things that happen in the vast 
space that is generated in high dimensions. In each of the four 
plots the X axis corresponds to the number of dimensions. 
The Y axes vary depending on the measure. Focus on the 
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trends of the curves since the magnitudes of the Y axes are 
irrelevant and these trends are the same for any sample size, 
distribution of the data, distance measures, or prediction 
models.

The Distance Between Samples plot shows that the average 
distance between pairs of samples get larger with increasing 
dimensions. This means that the data points are getting 
further away from each other.

The Distance From Center plot shows that the average 
distance between each sample and the center point at (0, 
0) get larger with increasing dimensions. This means that 
the data points are moving away from the center of the data 
and towards the outer edges. 

The Prediction graph shows that as the number of dimensions 
increases models can be found that predict group membership 
perfectly, even when the data are random and unrelated to 
group membership. This results in wrong prediction models.

The Max-to-Min Distance graph is subtle in 
terms of how it is calculated and what it means. 
The Y axis is the percent difference between the 
maximum and minimum pairwise distances with 
large values indicating the two samples furthest 
apart from each other are much further apart 
than the two closest samples. This is seen for 
low dimensions. For small values this means the 
two samples furthest apart are about the same 
distance apart as the two nearest samples in 
the data. In other words all the samples become 
equally distant from every other sample making 
any cluster analysis meaningless.

Figure 3 shows that as the dimensions increase 
the data moves towards the outer edges of the 
coordinates. This is another way to view the 
Distance From Center plot. In Figure 3 the 
10% boundary squares (i.e., 10% of the data 
will fall within and 90% outside of the dashed 

lines) for 2, 10, and 1,000 dimensions are shown. This shows 
that as dimensions increase 90% of the data is at the outer 
ring of the data space – data disappear from the center!

Multiple Testing Adjustment
Almost everyone with high-throughput data ask about multiple 
testing adjustment and say they aren’t happy with it because 
none of the variables remain significant. The multiple testing 
problem and the curse of dimensionality go hand in hand 
with each other – if you have one you have the other since 
they both rear their ugly heads when you have measured 
a lot of covariates.

Most people have somewhat of an understanding of what P 
< 0.05 means. In simple terms, if you test a non-significant 
covariate between 2 groups, say using a t-test, there is a 5% 
chance its P value will be < 0.05. When this happens you 
won’t know for certain if it is significant or non-significant, but 
can say that you only have a 5% chance it is not.

Multiple testing becomes a problem when you are testing 
more than 1 covariate. Consider testing 2 covariates. It may 
happen the first covariate is significant, the second covariate 
is significant, or both covariates are significant. This impacts 
the probability calculations. If you find one covariate significant 
with P < 0.05, the probability it is not significant is no longer 
5% as in the case with 1 statistical test, but rather 9.75% 
chance it is not significant. If there are 3 covariates the chance 
of a significant covariate not really being significant is 14.3%, 
and for 10 covariates it becomes 40.1%. In other words, 
multiple testing really increases your chance of being wrong 
by deciding a non-significant covariate is significant, and you 
waste time and money following up on false positive results.

Figure 4 shows P values from a t-test 1,000 random variables 
comparing two random groups of 50 samples. (Again, this 
holds for any distribution, sample size, and statistical test – we 
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are interested in the trend). Since this was all random data 
no covariates are predictive of group membership except 
by chance. Along the X axis is the ordering of the P values 
from smallest to largest (on a log scale to spread them out 
a bit), and along the Y axis the P values. The black ‘+’s’ 
correspond to the 1,000 non-significant covariates. Three 
significant covariates with standard small, medium, and large 
effect sizes were simulated and their P values shown as 
red dots. 

Accepting all covariates with P < 0.05 (points below solid 
dashed line at P = 0.05) would capture the medium and 
large effect size significant covariates, as well as about 50 
false positives (+’s to the left of the vertical dashed line at 
50) – and there is no way to distinguish the true positives 
from the false positives.

Many analysts want to use multiple testing adjustment 
to eliminate false positives and enrich for true positives. 
However, this approach is only moving the goal post and 
does not ensure you end up with the significant covariates. 
The horizontal dashed line at P = 0.05 / 1000 = 0.00005 is 
the Bonferroni adjusted P value. If we only declare covariates 
significant with P less than this value we capture the large 
effect but lose the medium effect covariate. Since significant 
covariates do not necessarily have large effect sizes (in fact 
most are probably small), you will have no idea how many 
significant covariates you have lost, or what the false positive 
and false negative rates are. 

Multivariate versus Univariate
Testing each covariate or dimension by itself is called 
univariate testing, and looking at 2 or more simultaneously 
is called multivariate testing. While moving the P value 
goalpost with multiple testing adjustment seems appealing, 

it does nothing to help find the dimensions or covariates 
that by themselves have no signal, but in combination with 
other covariates become very important.  In genetics this is 
known as epistasis and can result in missing important genetic 
variants. The same problem exists for any high-throughput 
technology producing a lot of dimensions.

There are three seemingly obvious approaches to solve this. 
The first is a dimension reduction approach such as PCA. 
However, the curse of dimensionality results in samples being 
equidistant from each other so the mathematics won’t work 
(the mathematics is so unstable in large P, small N problems 
that the addition or deletion of a single sample, or the slight 
change to some of the numbers can result in completely 
different conclusions – imagine a regression model where 
the slope is positive until you add one more sample and the 
slope becomes negative). 

The second is to select dimensions based on biology and 
an understanding that they share a common function (e.g., 
SNPs in a pathway). This can reduce the dimensions to 
where standard multivariate methods apply and is something 
we strongly encourage.

When biology does not indicate which dimensions (covariates) 
to keep, another approach is to explore subsets of covariates to 
find which in combination are significant. This is a multivariate 
approach and avoids problems like epistasis. However, the 
ability to compute all the combinations is difficult (it is called 
combinatorial explosion) because there are too many ways to 
test all two-way combinations, three-way combinations, etc. 
To solve this problem BioRankings has developed a genetic 
algorithm to find subsets of the covariates in high-throughput 
data that in combination are significant. This is discussed in 
BioRankings Technical Report #3.

Conclusion
The curse of dimensionality, or large P small N problem, 
causes weird behavior in data that make classical statistics 
lead to the wrong conclusions. This includes distances 
which destroy any cluster structures that might exist in lower 
dimensions, and the ability to be able to predict a random 
outcome with perfect precision. It must be remembered that 
any results you get may be completely wrong and due simply 
to the dimensions. Avoid being overconfident.

High-dimensional data should be and will be analyzed, but 
should be thought of as an exploratory analysis. Conclusions 
from these first analyses should be confirmed in well designed 
controlled follow-up experiments.
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BioRankings’ Technical Report Series
BioRankings’ mission is to help biomedical researchers move their technology from 
the lab to clinical applications using statistically valid analytical tools for efficient study 
designs, correct data analyses and conclusions, and rigorous and objective decision 
making for designing follow-up studies and eventual FDA approval.

To help achieve its mission, BioRankings publishes a Technical Report series focused on applying various 
statistical methods to real data analyses. Written for understanding by scientists and administrators, 
these reports will provide an intuitive understanding of the analyses leaving the statistical details to 
other publications.

For more information, contact BioRankings 
at 314-704-8725 or bill@biorankings.com.


