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Finding Distinct Subgroups of Samples 
Using Microbiome Taxa Count Data

A recent paper by Shaikh and Beyene raised our interest in revisiting having an objective way to decide 
how many subgroups exist in a microbiome dataset (Shaikh & Beyene, 2017). Many researchers ask if 
there are clinically or biologically important distinct subgroups of subjects defined by taxa communities in 
the data they collected. Perhaps the best-known example of this is enterotypes (Arumugam et al., 2011).

Shaikh and Beyene proposed using finite mixture models combined with the Dirichlet-multinomial 
distribution for this problem. In this first BioRankings’ Technical Report we show how cluster analysis 
is highly subjective with results changing for different inputs, why arguments against the Dirichlet-
multinomial distribution for microbiome data are wrong, how the finite mixture models operate, and 
finally an example of this analysis using HMP stool samples.

The Value of Objectivity 
in Data Analysis

Many researchers use nonparametric cluster analysis to 
find sample subgroups (Shannon, Culverhouse, & Duncan, 
2003; Zhou et al., 2013). While a good exploratory tool, 
cluster analysis does not provide objective rigor that is 
desired in advanced statistical analysis, nor will it, or other 

exploratory methods, 
be acceptable by the 
FDA as statistical 
evidence. In Figure 
1 HMP stool samples 
are clustered based 
on count or proportion 
data and complete 
or single linkage 
clustering algorithms. 
Visually, these 

unlabeled dendrograms indicate different results suggesting 
a researcher’s conclusion will be based on which subjective 
decisions are made concerning the analyses.

Parametric models are an example of a class of objective 
statistical methods that should be used in microbiome data 
analysis. An example of a commonly used parametric model 
from introductory statistics is the Normal Distribution defined 
by two parameters – the mean and standard deviation – to 
describe ‘bell-shaped’ data. Parametric models let the analyst 
summarize data by estimating the parameters (known as 
sufficient statistics), calculate probabilities on the data (e.g., 
probability a student is 6 feet tall or taller), and make use of 
known mathematical properties of parametric models such 
uniformly most powerful (UMP) hypothesis tests which have 
the greatest power compared to any other test that might be 
used, convergence, and unbiasedness.

The objectivity and statistical rigor provided by 
parametric methods in data analysis is required by 
the FDA for biomarker validation and drug approval. 
Incorporating parametric analytics into your R&D 
pipeline early will save you time and frustration 
of having to go back and retrospectively apply 
these methods to the data in your NDA application. 
(FDA, 2017)

Parametric Model for 
Microbiome Data

Shaikh and Beyene start with a review of the literature on 
parametric models for microbiome data. They write in their 
introduction:

Processing microbiome data results in a long list of 
sequences for every sample processed. As mentioned, 
these sequences can be aggregated to create a table 
tallying how many of each OTU was found in each sample. 
This OTU table forms the basis of many analyses. One 
approach is to analyze the relative proportions of each 
OTU within the sample. A natural distribution to model 
proportions is the multinomial distribution, a generalization 
of the binomial distribution. Unfortunately, microbiome 
data exhibit dramatic overdispersion for such a simple 
distribution, making any results using just the multinomial 
questionable. One approach to handle this overdispersion 
is through a more flexible variant of the distribution, the 
Dirichlet-Multinomial (DM) distribution(Moismann, 1962). 
Several uses and extensions to the DM have been 
introduced in the microbiome literature for a variety of 
useful applications. A hypothesis test to see if the data 
are indeed suitably modelled by a DM was previously 
outlined (La Rosa et al., 2012). The DM has been used 
in sparse variable selection (Chen & Li, 2013), and been 
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Figure 1 Two hierarchical clustering 
analyses of the same data produces 
different results.
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advocated as a realistic means of simulating microbiome 
data (Chen et al., 2012). The DM has also been used in 
clustering algorithms to find structure using finite mixture 
models (FMMs) (Holmes, Harris, & Quince, 2012).

Many researchers have resisted the use of the Dirichlet-
multinomial distribution for microbiome data based on 
fundamental errors in their statistical thinking. In one paper 
the authors mistakenly claim it is inappropriate since positive 
correlations between taxa were observed when correlations 
between taxa must be negative in this type of model (Mandal 
et al., 2015). Observing positive correlations is not a proof that 
the DM is wrong for microbiome data. Positive correlations 
could easily be seen when the DM model is correct due to 
the statistical ideas of convergence, data representation, and 
independent and identically distributed (iid) data. 

Convergence says that as a sample size gets larger the 
estimate of statistics (e.g., correlation) becomes more 
accurate. For a small sample size random variability in the 

count data will likely 
produce positive 
correlations which 
dissappear as 
the sample size 
increases. Figure 
2 shows this where 
positive correlations 
are seen for N = 

100 DM simulated data points, but fewer as N = 1,000 as 
expected due to convergence. The presence of positive 
correlations does not negate the appropriateness or use 
of the Dirichlet-multinomial.

The natural representation of microbiome data is as 
compositional data (Aitchison, 2003). However, researchers 
who use an incorrect data representation can also be 

misled to see 
positive correlations 
between taxa 
and incorrectly 
conclude the DM 
model is wrong. 
In an experiment 
the total number of 
reads varies across 
samples. Figure 3 
shows how this can 
occur. In the left plot 

the total read count in each sample is not taken into account 
and a plot of the reads of taxa A and B show a correlation 
of 1. The appropriate representation is the ratio of taxa A 
to B which is shown in the right plot where the X axis is 
the total count and the Y axis the reads for taxa A and B. 
For each sample the ratio is 2:1 indicating a correlation of 
0. The DM model uses the read counts as the natural 
representation of the microbiome data avoiding the need 

to use a subjective transformation of the data which 
can lead to different conclusions depending on which 
transformation is selected.

Independent and 
Identically Distributed

The iid assumption makes two claims about data. The first, 
independence, is that the values of one sample’s data are not 
influenced by nor influence the values of another sample. The 
second, identically distributed, assumes that the data are 
sampled from the same probability model. This second issue 
is perhaps less intuitive than independence so is illustrated 
here by a clinical example. Suppose a treatment is given 
which has a 50% cure rate and a group of random patients 
have been selected to receive the treatment. If the probability 
of cure is 50% for each patient, we say they are identically 
distributed. If it is found that males have a lower cure rate 
of 40% versus females 50% then males and females are 
not identically distributed – males come from a Bernoulli 
distribution with a probability of 0.4 of cure, and females from 
a different Bernoulli distribution with a probability of 0.5 of 
cure. However, males are identically distributed and females 
are identically distributed. 

Assuming i.i.d. on datasets is routinely done in most 
statistical hypothesis testing and is appropriate for the 
microbiome and Dirichlet-multinomial. In cases where 
samples are not identically distributed but may come 
from 2 or more distributions then positive correlations 
might be observed. The following section discusses how 
this can be tested.

Finite Mixture Models
Figure 4 illustrates finite mixture models with an example 
of two Normal Distributions centered at X = -1 and X = 1, 

shown by the colored 
dashed lines. If the 
data are combined 
and analyzed together 
the density curve, 
represented by the 
histogram and black 
line would suggest one 
distribution centered at 
X = 0 exists.

Finite mixture model methods provide the formal 
statistical machinery and algorithms to test for mixtures 
of distributions in data and identify which samples 
belong to which subgroup (McLachlan & Peel, 2000; 
Schlattmann, 2009). Using this approach combined 
with the Dirichlet-multinomial model, the analyst can 
partition the microbiome samples into subgroups where 
the data within each group are iid. Since it is automatic 
and objective, the results will not depend on the input.

Figure 2 Increasing sample sizes shows 
convergence onto true correlation 
coefficients.

Figure 3 Incorrect data representation can 
easily lead to incorrect conclusions.

Figure 4 Illustration of the mixture of two 
Normal distributions.
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Finding Subgroups in Microbiome 
Data Using Objective Finite 

Mixture Models
We fit finite mixture models using the Dirichlet-multinomial 
distribution to 205 HMP stool samples at the phylum level. 

Since counts are the 
natural representation 
for the DM model, no 
transformation of the 
data was required.

To decide how many 
distributions are in 
the data, the fmm-
dm was run for 1-6 
possible subgroups. 
Each of the six runs 
was scored based on 

the model fit with the minimum score indicating the number 
of subgroups. Figure 5 shows there are 3 distinct subgroups 

of stool samples, 
where each of the 
subgroups is modeled 
by a separate DM 
distribution.

Each sample is 
assigned to one of 
the 3 distributions. 
Figure 6 shows the 
first and second 
linear discriminant 

analysis scores plot with the 3 groups color coded. Clear 
boundaries separating the groups are evident suggesting 
possible clinical or biological importance distinguishing these 

samples. Since each 
group is represented 
by a DM distribution, 
the estimate of the 
taxa proportions within 
each group could 
be estimated using 
maximum likelihood 
to identify how these 
groups differ. Figure 
7 shows Group 1 
having moderate 
Bacteroidetes and 

Firmicutes, Group 2 having high Bacteroidetes and low 
Firmicutes, Group 3 having low Bacteroidetes and high 
Firmicutes. The proportion of the 205 HMP stool samples 
falling into groups 1, 2, and 3 are 55%, 33%, and 12%, 
respectively.

 
Conclusion

Objective statistical tools based on parametric models will 
almost surely be required for FDA approval of microbiome 
biomarkers and drugs. Developing your R&D pipeline using 
statistical models such as presented here should make future 
interactions with the FDA more seamless. An example is 
finite mixture models using the  Dirichlet-multinomial 
as an objective and automatic way for finding subgroups 
in contrast to cluster analysis where the analysts’ choices 
on methods can significantly impact the results they obtain. 

BioRankings’ Technical Report Series
BioRankings’ mission is to help biomedical researchers move their technology from the lab to clinical 
applications using statistically valid analytical tools for efficient study designs, correct data analyses and 
conclusions, and rigorous and objective decision making for designing follow-up studies and eventual 
FDA approval.

To help achieve its mission, BioRankings publishes a Technical Report series focused on applying various 
statistical methods to real data analyses. Written for understanding by scientists and administrators, 
these reports will provide an intuitive understanding of the analyses leaving the statistical details to 
other publications.

For more information, contact BioRankings 
at 314-704-8725 or bill@biorankings.com.

Figure 5 Model goodness-of-fit indicates 
the HMP stool samples consist of 3 
distinct and non-overlapping subgroups.

Figure 6 Projection of the HMP stool 
samples labeled by subgroup membership 
shows clear separation.

Figure 7 Plot of taxa proportion 
differences defining the 3 subgroups. (The 
non-differentiating taxa are not labeled.)
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